Nanofibrillar cellulose-alginate hydrogel coated surgical sutures as cell-carrier systems

نویسندگان

  • Patrick Laurén
  • Petter Somersalo
  • Irina Pitkänen
  • Yan-Ru Lou
  • Arto Urtti
  • Jouni Partanen
  • Jukka Seppälä
  • Mari Madetoja
  • Timo Laaksonen
  • Antti Mäkitie
  • Marjo Yliperttula
چکیده

Hydrogel nanomaterials, especially those that are of non-human and non-animal origins, have great potential in biomedical and pharmaceutical sciences due to their versatility and inherent soft-tissue like properties. With the ability to simulate native tissue function, hydrogels are potentially well suited for cellular therapy applications. In this study, we have fabricated nanofibrillar cellulose-alginate (NFCA) suture coatings as biomedical devices to help overcome some of the limitations related to cellular therapy, such as low cell survivability and distribution out of target tissue. The addition of sodium alginate 8% (w/v) increased the NFCA hydrogel viscosity, storage and loss moduli by slightly under one order of magnitude, thus contributing significantly to coating strength. Confocal microscopy showed nearly 100% cell viability throughout the 2-week incubation period within and on the surface of the coating. Additionally, typical morphologies in the dual cell culture of spheroid forming HepG2 and monolayer type SK-HEP-1 were observed. Twelve out of 14 NFCA coated surgical sutures remained intact during the suturing operation with various mice and rat tissue; however, partial peeling off was observed in 2 of the coated sutures. We conclude that NFCA suture coatings could perform as cell-carrier systems for cellular based therapy and post-surgical treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sustained Release of Risedronate from PLGA Microparticles Embedded in Alginate Hydrogel for Treatment of Bony Lesions

Background: Inflammatory bone resorption in periodontitis can lead to tooth loss. Systemic administration of bisphosphonates such as risedronate for preventing bone resorption can cause adverse effects. Alginate hydrogel (ALG) and poly (lactic acid-co-glycolic acid) (PLGA) microparticles have been studied as drug delivery systems for sustained release of drugs. Therefore, the release pattern of...

متن کامل

Synthesis and characterization of silver nanoparticles and its immobilization on alginate coated sutures for the prevention of surgical wound infections and the in vitro release studies

The Silver nanoparticles are well-known for their antimicrobial, anti-inflammatory wound healing abilities. We synthesized Silver nanoparticles using chemical reduction method and the formation of the silver nanoparticles was characterized by UV-Vis absorption spectroscopy, FT-IR and SEM techniques. The minimum inhibitory concentration of the synthesized nanoparticles was determined for both gr...

متن کامل

Synthesis and characterization of silver nanoparticles and its immobilization on alginate coated sutures for the prevention of surgical wound infections and the in vitro release studies

The Silver nanoparticles are well-known for their antimicrobial, anti-inflammatory wound healing abilities. We synthesized Silver nanoparticles using chemical reduction method and the formation of the silver nanoparticles was characterized by UV-Vis absorption spectroscopy, FT-IR and SEM techniques. The minimum inhibitory concentration of the synthesized nanoparticles was determined for both gr...

متن کامل

Hydrogels Containing Marine Polysaccharides For Bone and Cartilage Tissue Engineering

Introduction: The most common biopolymers used to build-up 3D scaffolds for bone and cartilage tissue engineering are chitosan, alginate, cellulose derivatives, hyaluronic acid, chondroitin sulfate, collagen and gelatin. In this study, we propose to evaluate the potential of two new marine exopolysaccharides (HE800 and GY785) that are glycosaminoglycan-like polymers and that can be produced in ...

متن کامل

3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel

Three-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, espec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017